
Kubernetes
Basics

Everyone’s container journey starts with one container….

2

At first the growth is easy to handle….

3

But soon you have many applications, many instances…

4

And that is why there is container orchestration

5

What is container orchestration?

6

Cluster management creates unified targets
for varied workload

Scheduling intelligently distributes containers
across nodes

Service discovery knows where containers are
located and provides a method to direct
requests to them

Replication allows the workload to be scaled

Health management creates a method to
ensure the application is assured to be viable
by allowing unhealthy containers to be
replaced

Container Orchestrator

Manager

Scheduler

Replicator

Node

Daemon

Containers

Node

Daemon

Containers

Node

Daemon

Containers

Image
repository

Discovery
DB

Management of the deployment, placement, and lifecycle of workload containers

Container ecosystem

© Copyright IBM Corporation 2017

Container scheduling

Container orchestration

Virtual infrastructure

Container engine

Physical infrastructure

Operating system

Application workflow

1

2

3

4

5

6

7

Kubernetes,
Docker Swarm,
Apache Mesos

Docker

VMWare, AWS

Ubuntu, RedHat,
CoreOS

What is Kubernetes? Fully open source container orchestrator inspired
and informed by Google's experiences and internal
systems

Unified API for deploying web applications, batch
jobs, and databases maintaining and tracking the
global view of the cluster

Supports multiple cloud and bare-metal
environments

Manage applications, not machines providing a
better framework to support rolling updates, canary
deploys, and blue-green deployments

Designed for extensibility

Rich ecosystem of plug-ins for scheduling, storage,
and networking

Open source project managed by the Linux
Foundation

Kubernetes strengths

Clear governance model
‒ Managed by the Linux Foundation.

‒ Google is driving the product features and roadmap, while allowing the rest of the ecosystem to participate.

Growing and vibrant ecosystem
‒ IBM, Huawei, Intel, and Red Hat are among the companies making prominent contributions to the project.

Avoid dependency and vendor lock-in
‒ Active community participation and ecosystem support.

Support for a wide range of deployment options
‒ Customers can choose between bare metal, virtualization, private, public, and hybrid cloud deployments

‒ Wide range of delivery models across on-premises and cloud-based services.

Design is more operations-centric
‒ First choice of DevOps teams.

10

Kubernetes
The Building Blocks

Immutability

Build Once - Deploy Everywhere

The same container image is
built once and is moved
between environments

Pod

A single unit of work in Kubernetes, which may consist of one or more containers

All containers in a pod
are co-located and co-
scheduled, and share
the kernel namespace
(process, storage,
network, etc.)

Pod Health Checking
Pods are automatically kept alive by “process check” checking the basic status of the main

process for the application

To go beyond this Kubernetes
allows you to create a
liveness probe to provide
additional means for
identifying health.

Config Maps & Secrets

Share and store configurations, credentials and more

Store the configurations and
secrets (credentials,
certificates) in the K8s
environment and mount them
to the local filesystem within
container(s)

The container image can
move un-changed between
environments (i.e. container
immutability)

Replicaset

Replicasets run one-to-
many instances of the
desired pod

When possible the replica
pod should be stateless or
near-stateless

Scale pods horizontally and provide resiliency

Service Discovery

Kubernetes has an internal DNS that is used as a Service Registry.

A Service resource in
Kubernetes results in an
entry in the internal DNS

By default, a Service points
to an internal Cluster IP that
load balances between a set
of healthy running pods

Ingress Resources
External access to applications running in Kubernetes may be enabled through Ingress

resources and proxy nodes

The proxy node(s) in ICP
expose services defined in
Kubernetes

More on Scaling

More on Scaling

Allows you to scale the
number of running pods in
a replicaset based upon
resource (or application
custom) metrics

Horizontal Pod Auto-scaling (HPA)

Statefulsets
Similar to replicaset for the purpose of scale or redundancy and/or, statefulsets run one-to-

many instances of the desired pod

Unlike replicasets the are intended for
applications requiring state.

Valuable for applications that require:
• Stable, unique network identifiers
• Stable persistent storage
• Ordered graceful deployment and scaling
• Ordered graceful deletion and

termination
• Ordered automated rolling updates

Persistence & Storage

There are many types of persistent storage and many provider options

Some pods must be able to
persist data so that if Kubernetes
restarts them on the same or
another node data loss is avoided

Kubernetes will re-attach the
shared storage when the pod
(re)starts

Storage providers support
different retention and recycling
policies and the definitions of
these are not universal

21

Kubernetes
More on Persistent Storage

Persistent Storage Overview

Storage that persists beyond the lifecycle of the container allows workload to
achieve state

Docker, containers and persistence

Kubernetes, pods and persistence

Terminology and the persistent lexicon

Value of the persistence solution

22
IBM Cloud / © 2018 IBM Corporation

We strive to simplify our configuration management by moving towards
immutability

It is about STATE not STORAGE

23
IBM Cloud / © 2018 IBM Corporation

Stateless
Applications that

containerize the best
tend to be stateless
with a small number

of configuration
parameters required
for personalization

Containers are
purposefully not
Virtual Machines
and do not carry
the burden of a
VMs resource
management

Containers Pervasive
As orchestration is used
to place containerized

workload throughout the
private cloud it becomes

important that the
persistent storage is

equally mobile

State
Some services require

backing storage to
maintain the current

operating state such as
a database or an
applications that

persist transactions

24

Persistent Storage

Persistent Volume is a storage resource within the
cluster. PVs have a lifecycle independent of any
individual pod that uses it. This API object
encapsulates the details of the storage
implementation or cloud-provider-specific storage
system.

A Persistent Volume Claim is a storage request, or
claim, made by the developer. Claims request
specific sizes of storage, as well as other aspects
such as access modes.

A StorageClass describes an offering of storage
and allow for the dynamically provisioning of PVs
and PVCs based upon these controlled definitions.

Solution components

25

Kubernetes
Deploying Applications

Deployments

Deployments manage rolling updates to ReplicaSets and StatefulSets

When a new version of the application
is available, the Deployment provides
the ability to scale down the previous
version of the application and scale
up the new version in a controlled
fashion with zero downtime

Enables rollback in the case of failure

Helm
An application deployment in Kubernetes is more than just the container image and
includes configuration, secrets, services, ingress resources, and storage definitions

Helm allows you to manage all of the
artifacts that build your application

Resources are templated and
replaced dynamically at installed
time

Tells Kubernetes all it needs to know
about an application, its parameters
and dependencies

Application Center components

28

Application center provides a centralized
location from which you can browse, and
install packages in your cluster.

Helm: A tool for managing Kubernetes
charts. Charts are packages of pre-
configured Kubernetes resources.

Helm Repository: A Helm
chart repository is a location where
packaged charts can be stored and shared.

Tiller: Runs inside of the cluster, and
manages releases (installations) of your
charts.

CI / CD with Jenkins

Build artifacts from
Jenkins (the
container image)
are continuously
built and deployed
in ICP

The same image is
promoted between
each environment
(dev, QA, stage,
prod)

30

Kubernetes
The Cluster

Worker node

Kubernetes cluster architecture

Worker node

Master node

Docker
pod pod

Docker
pod pod

Kubernetes cluster

kubelet kubelet

Kubernetes
API

kubectl controller

10.0.0.1 10.0.0.2 10.0.0.3 10.0.0.4

.yaml

scheduler

Master Node components

• Make scheduling decisions for the cluster, and respond to cluster events, like a node failure

• Can run on any node in the cluster, but typically all master components run on the same virtual machine (vm),
and do not run any container apps on that vm

Master node

etcd

kube-controller-manager

Node controller

Replication controller

Endpoints controller

Service account &
token controller

Kubernetes
API

scheduler

DNS

Master Node Components

Etcd
– A highly-available key value store

– Stores all cluster data

API Server
– Exposes API for managing Kubernetes

– Used by kubectl CLI

Scheduler
– Selects the worker node for each pods runs

Controller manager
– Daemon that runs controllers (background

threads that handle routine tasks in the cluster)

– Node Controller – Responsible for noticing and
responding when nodes go down

– Endpoints Controller – Populates the
Endpoints object (joins services and pods)

– Service Account and Token Controllers –
Create default accounts and API access
tokens for new namespaces

Worker Node Components

• Provide the Kubernetes runtime environment; run on every node

• Maintain running pods

Worker node
kubelet kube-proxy

Docker
pod pod

10.0.0.3 10.0.0.3

35

Kubernetes
Further Concepts

Naming in Kubernetes
Name

– Each resource object by type has a unique name

Namespace

– Resource isolation: Each namespace is a virtual cluster within the physical cluster

• Resource objects are scoped within namespaces

• Low-level resources are not in namespaces: nodes, persistent volumes, and namespaces
themselves

• Names of resources need to be unique within a namespace, but not across namespaces

– Resource quotas: Namespaces can divide cluster resources

– Initial namespaces

• default – The default namespace for objects with no other namespace

• kube-system – The namespace for objects created by the Kubernetes system

Kubernetes configuring
Containers and Resources

Label

• Metadata assigned to Kubernetes
resources (pods, services, etc.)

• Key-value pairs for identification

• Critical to Kubernetes

Selector

• An expression that matches labels to
identify related resources

Kubectl commands
Support different approaches to working with Kubernetes objects:

• Imperative commands on live objects.

• Individual configuration files or directories of files.

Important: maintain a consistent approach when working with the same object; do not mix approaches.

Basic syntax:

<verb> <objecttype> [<subtype>] <instancename>

• Where the <verb> is an action such as: create, run, expose, autoscale.

• <objecttype> is the object type, such as a service.

• Some objects have subtypes. For example, a service has ClusterIP, LoadBalancer, NodePort.

• Use the -h flag to find the arguments and flags supported by a subtype

• <instancename> specifies the name of the object

© Copyright IBM Corporation 2018

Kubectl command useful examples

Get the state of a cluster
$ kubectl cluster-info

Get all the nodes of a cluster
$ kubectl get nodes -o wide

Get info about the pods of a cluster
$ kubectl get pods -o wide

Get info about the replication controllers of a cluster
$ kubectl get rc -o wide

Get info about the services of a cluster
$ kubectl get services

Get full config info about a Service
$ kubectl get service
NAME_OF_SERVICE -o json

Get the IP of a Pod
$ kubectl get pod NAME_OF_POD -
template={{.status.podIP}}

Delete a Pod
$ kubectl delete pod NAME

Delete a Service
$ kubectl delete service
NAME_OF_SERVICE

Resources

Kubernetes tutorial

– https://kubernetes.io/docs/tutorials/kubernetes-basics/

Introduction to container orchestration

– https://www.exoscale.ch/syslog/2016/07/26/container-orch/

TNS Research: The Present State of Container Orchestration

– https://thenewstack.io/tns-research-present-state-container-orchestration/

Large-scale cluster management at Google with Borg

– https://research.google.com/pubs/pub43438.html

https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://www.exoscale.ch/syslog/2016/07/26/container-orch/
https://thenewstack.io/tns-research-present-state-container-orchestration/
https://research.google.com/pubs/pub43438.html

41
© 2018 IBM Corporation

